Aviation and the Belgian Climate Policy: Integration Options and Impacts

ABC Impacts

Potential mitigation measures for non-CO₂ climate impacts

Workshop on non-CO₂ aviation climate impacts 2 February 2009

Overview of the non-CO₂ mitigation options

- 1. Regulation (emission standards)
- 2. Financial/economic tools
- 3. Infrastructure
- 4. R&D
- 5. Voluntary actions

1. Regulation

Existing ICAO standards on NO_x engine emissions with new requirements since 2008

Advantages

- international implementation
- additional benefits =
 reduction local air pollution
 (if no growth in traffic volume)

Drawbacks

- based on LTO cycle
- no consideration related to the altitude where emissions occur
- decision process very slow => in phase with technological progress?
- applicable to other climate impacts precursors?

1. Regulation (2)

- Potential more stringent EU standards :
 - o improvement of local air quality impacts (if no growth in traffic volume) => in phase with NEC directive, etc.

but

- o no global implementation => market distortion ?
- evasion risk => questionable positive impacts on global climate change
- o standard on cruise emissions => methodology to assess these emissions to be developed (aircraft/engine couple + weight)?

2. Financial/economic instruments

2.1. Market mechanisms

2.2. Tax on emissions

2. Financial/economic instruments (1)

2.1. Market mechanisms

- Integration in the EU-ETS
 - o with a multiplier
 - fix (trade-offs between GHGs not taken into account; simplicity)
 - variable (based on simplified indicators such as the altitude, the route, the season, the aircraft type, etc. => more accurate but need more data)
 - o with separate certificates to be traded in parallel (conversion with CO₂ certificates?)
- Separate trading scheme for non-CO₂ emissions (feasible for NO_x but difficult for other climate impacts; conversion with CO₂ certificates?; other sources to be included?)

2. Financial/economic instruments (3)

2.2. Tax on emissions

- Tax on NO_x emissions
 - o revenue-neutral scheme (Sweden and Switzerland) or not (UK)
 - LTO charge (no link with altitude and real climate impact; simplicity)
 - o en-route charge (methodology to assess the real emissions and associate climate impact to be developed)

3. Infrastructure

Slot allocation based on environmental performances?

Process of slot allocation very different from one airport to another => feasible ?

4. R&D

4.1. Engine improvements

4.2. Alternative fuels

4.3. Meteorological forecasts

4.4. Optimisation of operational measures (ATM)

4. R&D (2)

4.1. Engine improvements

- trade-off between fuel efficiency, noise and AIC
- ACARE project aims at reducing emissions at source
- OK for CO₂ and NO_x (+/-LT) if no traffic growth; quid for AIC (cf. better fuel efficiency linkedd with more AIC formation)?

4. R&D (3)

4.2. Alternative fuels

- production process to be taken into account
- potentially greater AIC impacts (cf. biofuels have lower carbon content)

4. R&D (4)

4.3. Meteorological forecasts + ATM

- German project UFO evaluates the possibilities to predict ice super saturated areas (where AIC are produced)
- Lufthansa's LIDOL software to optimise flight patterns taking into account AIC formation (cf. ISSA are quite thin: +/-300m)

Remark: trade-off between AIC avoidance and increased fuel consumption calculated on the basis of an "energy metric" of contrails (estimated RF * duration * surface occupied) compared to the "energy metric" of CO₂ (RF * 100 years * world-wide surface)

4. R&D (5)

4.4. Optimisation of operational measures (ATM)

- Camera on aircraft : easily feasible but difficult to predict fuel use
- Continuous Descent Approach
- SESAR and other projects to improve airspace capacity and reduce congestion at airports: ok at short term to reduce fuel consumption but impact at longer term (cf. example of the highways)? + do not take into account AIC formation

5. Voluntary actions

- 5.1. Manufacturers voluntary agreements
 - Engine and/or aircrafts manufacturers
- 5.2. Voluntary offsets

Many thanks for your attention!

Any questions

More details and information available on:

http://www.climate.be/abci

