ced cloudiness in climate model CCLM

FERRONE Andrew Jean-Pascal van Ypersele Philippe Marbaix

Meteoclim PhD symposium 28/01/2009

Institut d'astronomie et de géophysique Georges Lemaître, Louvain-la-Neuve, Belgique(andrew.ferrone@uclouvain.be)

- * Motivation: Impacts of aviation on climate
- * Theory of contrail formation and representation in the model
- * Some preliminary results
- * Next steps
- * ABCi project

Climate impacts of aviation

Factor of : climate warming climate cooling

$$NO_x + C_xH_y + CO_2 + H_2O + CO + C_{BC} + SO_x$$

(cooling because concentration diminishes)

(Direct emissions)

(Transformation in the Wake of planes)

Condensation trails (Contrails)

if air is supersaturated

Reflexion of incoming solar light

Absorbtion of outgoing long wave terrestrial radiation

Mean dirumal effect = Climate warming

Local radiative forcing

Theory of contrail formation and representation in the model

Source: S. Unterstrasser (2008)

Source: S. Marquart (2003)

Isobaric mixing of air emitted by the reactor with surrounding air. The slope is given by:

$EI(H_2O) c_p P / [0.622 Q (1-\eta)],$

where $El(H_2O)$ emission water vapor index, c_p is the specific thermal capacity of water, P the ambient pressure, 0.622 the molar ratio of air and water molecules, Q the specific combustion heat of kerosene and η total efficiency of the airplane.

Source: S. Marquart (2003)

Source: S. Marquart (2003)

Ice microphysic scheme in CLM

Climate version derived from the NWP model **COSMO** (formerly **LOKAL** modell) developed by DWD

CLM includes a **2 category** (rain and snow are diagnostic) and **1 moment** (only mixing ratio are prognostic, particle number are diagnostic) microphysics scheme

The model **forms** ice via

- nucleation
- deposition
- freezing

Sinks of ice crystals are

- agregation
- autoconversion
- fusion

Source: C.Doms and U. Schättler: Scientific Documention of LM,1999

Parametrization of contrails

q^v: specific humidity calculated by CLM

 $q^{v}{}_{si}$: specific ice saturation humidity

α : parameter to account for the sub-grid scale growth of contrails
RH: relative humidity

Source: Lewellen & Lewellen, 2001

four-engined e.g. B747 (tick lines)

two-engined e.g. B737 (**thin line**)

Model configuration and some preliminary results

Model configuration

Additional ice due to aviation in CLM

Aviation forcing: The flown distance is homogeneous in every girdcell and is the average on one year based on AERO2k. This simulation does NOT CONTAIN FLIGHT ROUTE INFORMATION

Relative difference (in %) of ice mass between the the reference simulation and the simulation with contrails averaged on every model levels and for January 2005

Comparaison with observations

(Meyer et al., 2002, 2007)

Cloud cover (in % of sky covered) of linear contrails, as detected on satellite images for 2000-2005, with principal flight routes (in grey)

Relative difference (in %) of ice mass between the the reference simulation and the simulation with contrails averaged on every model levels and for January 2005

Contrail to cirrus evolution

Impact on cloud cover

Absolute difference (in % of coverage) of high clouds (> 8km) between the reference simulation and the simulation including the contrail parameterization, averaged on january 2005

Next steps

Finalizing the parameterization implementation

- Interpolate the AERO2k database $(I^{\circ}xI^{\circ})$ on the model grid $(0.2^{\circ}x0.2^{\circ})$

log de la quantité de kérosène utilisée (en kg) au niveau du sol

- Compare the results obtained with the <u>homogeneous forcing</u> with those based on the forcing based on <u>real flight data</u>

Analysis of radiative forcing of contrails

Validation of cirrus clouds and contrails

Quantification of impacts and sensitivity tests

- Quantification of the impact of aircraft induced cloudiness on the <u>total cloud</u> <u>cover</u> as well as the <u>diurnal temperature range</u> (DTR)
- Sensitivity test of <u>cruise altitudes</u>

Thank you for your attention Questions?

Condensation trails

Forçage radiatif des traînées de condensation (Wm⁻²)

Model choise and desciption of CCLM

30 year mean (2001-2030) A1B_1 total precipitation ECHAM5 and CLM

Model choice

Out of a choice of 10 models the folloowing 3 were analysed in more detials

	Cloud microphysics parametrization	Validation in Europe	User group	Paralelization Installation
MAR Modèle Atmosphérique Regional	detailed microphysics, prognostic calculation of cloud ice mass	incomplete validation in Europe	limited	no runs on our computers
CDSMO Model in Climate Mode	detailed microphysics, prognostic calculation of cloud ice mass	validated for the 20 th century in Europe; 21 th century projections done	European group with many interactions	yes runs on our computers
UM Unified Model	less detailed microphysics, diagnostic calculation of cloud ice mass	validated for the 20 th century in Europe; 21 th century projections done	international group, but limited support as available version in old	yes installation problems on our computers

Model choice

Out of a choice of 10 models the folloowing 3 were analysed in more detials

	Cloud microphysics parametrization	Validation in Europe	User group	Paralelization Installation
MAR Modèle Atmosphérique Regional	detailed microphysics, prognostic calculation of cloud ice mass	incomplete validation in Europe	limited	no runs on our computers
CLM COSMO Model in Climate Mode	detailed microphysics, prognostic calculation of cloud ice mass	validated for the 20 th century in Europe; 21 th century projections done	European group with many interactions	yes runs on our computers
UM Unified Model	less detailed microphysics, diagnostic calculation of cloud ice mass	validated for the 20 th century in Europe; 21 th century projections done	international group, but limited support as available version in old	yes installation problems on our computers

The CLM community

Model dynamics and numerics

Climate version derived from the NWP model COSMO (formerly LOKAL modell) developed by DWD

Model Equations

- Basic hydro-thermodynamical equations in advection form,
- no scale approximations (i.e. fully compressible and non-hydrostatic)

Prognostic Variables

- Horizontal and vertical wind components (u,v,w), temperature (T), pressure (P),
- specific humidity, specific cloud water content, cloud-ice

Spatial Discretization

• Second-order horizontal and vertical differencing (centered)

Time Integration

 3 time-level (<u>Leapfrog</u>) split explicit using extensions proposed by Skammarock and Klemp (1992).

Numerical Smoothing

- Rayleigh damping layer at upper boundary
- 4th order linear horizontal diffusion
- 3-D divergence damping in split steps

Grid-Scale Clouds and Precipitation

- Cloud water formation dissipation by <u>saturation adjustment</u>
- Cloud scheme including ice-clouds, precipitation and snow

Subgrid-Scale Clouds

• Subgrid-scale cloudiness (<u>fractional cloud cover</u>) is interpreted by an empirical function depending on relative humidity.

Moist Convection

 Mass-flux convection scheme after <u>Tiedtke</u> (1989) with closure based on moisture convergence.

Radiation

 δ-two stream radiation scheme based on <u>Ritter and Geylen</u> (1989) for shortand longwave fluxes; full cloud-radiation feedback.

Turbulent Diffusion

 Diagnostic K-closure (at hierarchy level 2 following <u>Mellor and Yamada</u> (1982)) for vertical diffusion.

Surface Layer

• Constant flux layer parameterization based on the Louis (1979) scheme.

Soil Processes

• Multi-layer soil model.

UCL-ASTR

The formation of a contrail can be decomposed in 3 phases:

I) **Jet regime** (~20s) The wingtip vortices roll up mutually, ice nucleation is starting and the crystals are trapped in the vortices

2) **Vortex regime** (2 to 3 minutes) The vortices start to descend and the adiabatic warming influences the growth of the crystals

3) **Dispersion regime**(several minutes /hours) turbulent mixing with ambient air, dispersion and growth of crystals

LES simulation of a contrail

Ice crystal number in a LES simulation of a contrail done by (S. Unterstrasser et al., 2008) with T=217K, Rhi=130% and u=6 m/s

Ice crystal mass produced

for two types of planes : four-engined e.g. B747 (**thick lines**) two-engined e.g. B737 (**fine lines**)

ambiant relative humidty is the main parameter governing the ice mass growth in the dispersion phase Climate version derived from the NWP model **COSMO** (formerly **LOKAL** modell) developed by DWD

Features:

- non-hyrostatic
- massively parallized
- codage clair et standardisé
- potentiel à long-terme assuré

ŕé

Parametrisation of contrails

q^v: specific humidity q^v_{si}: ice saturation specific humidty

Sob-gridscale growth of contrails

for two types of planes : four-engined e.g. B747 (**thick lines**) two-engined e.g. B737 (**fine lines**)

For the following simulations the dependence on growth of contrails at a time of 1000 s has been taken into account, as a function of supersaturation

The evolution of contrails before this time is thus not explicitly simulated

Vertical coordinate

Vertical distribution

simulation with contrails averaged on every model levels and for January 2005

 CLM

Vertical slice

Validation of cirrus clouds and contrails

- for the <u>validation of contrails</u> the data of (Meyer et al., 2002) covering the period 2000 to 2005 can be used
- The <u>supersaturation</u> in the model needs to be compared to satellite and other observational data

Quantification of impacts and sensitivity tests

- Quantification of the impact of aircraft induced cloudiness on the <u>total cloud</u> <u>cover</u> as well as the <u>diurnal temperature range</u> (DTR)
- Sensitivity test of <u>cruise altitudes</u>
- Influence of a <u>warmer climate</u> on the production of contrails

Why use a regional climate model?

FORSCHUNGSZENTRUM

Satellite Image

Differences between CLM and COSMO

Le modèle climatique et le modèle de prévision numérique du temps (NWP) ont le même code avec des différences d'utilisation

CLM

	Climate Mode	NWP mode	
Time integration	up to100s of year	several days	
Dependency on inital state	weak (after spin-up)	strong	
assimilation of obs data	no	yes	
vegetation, CO ₂ , ozone, SST	temporal variable, prescriped	constant	
possibilty of restart	yes	no	

Main conclusions of first phase

One focus for Belgian policy makers could be to reduce the impacts from transit aviation, especially via operational measures targeting non-CO₂ gases, as well as shift to other transport modes.

In a scenario limiting global temperature rise to 2°C (EU policy), but with unmitigated aviation (FaI), aviation (including CO2, ozone, cirrus etc.) adds about 15-20ppm CO_{2eq} in 2050

To compensate for this unmitigated aviation forcing, CO₂ emissions from all other sectors mus about 30% lower in 2050, in order to reach the 2°C target.

http://www.climate.be/abci

